大地测量学pdf下载 大地测量学基础百度云盘

游戏笔记 2025-01-04 10:35:38

大地测量学研究的内容是:研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。

大地测量学pdf下载 大地测量学基础百度云盘大地测量学pdf下载 大地测量学基础百度云盘


大地测量学pdf下载 大地测量学基础百度云盘


一、

大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作是为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、和各种航天器提供地面站的坐标和地球重力场资料。

二、任务

它的基本任务是研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。测地学确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。·研究月球及太阳系行星的形状及其重力场。建立和维持具有高科技水平的和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。研究为获得高精度测量成果的仪器和方法等。研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。

1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法;

2、确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变,测定极移以及海洋水面地形及其变化,研究月球及太阳系行星的形状及其重力场;

3、建立和维持具有高科技水平的和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。

萌芽阶段

17世纪以前,大地测量学处于萌芽状态。公元前3世纪,埃拉托色尼首先应用几何学中圆周上一段弧的长度、对应的中心角同圆半径的关系,计算地球的半径长度。公元724年,唐代的南宫说等人在张遂(一行)的指导下,首次在今河南省境内实测一条长约300千米的子午弧。其他也进行过类似的工作。但当时测量工具简陋,技术粗糙,所得结果精度不高,只是测量地球大小的尝试。

大地测量学形成

1687年I.牛顿发表万有引力定律之后,1690年荷兰c.惠更斯在其著作《论重力起因》中,根据地球表面的重力值从赤道向两极增加的规律,得出地球的外形为两极略扁的扁球体论断。1743年法国A.一C.克菜罗发表《地球形状理论》,进一步给出由重力数据和地球自转角速度确定地球扁率的克莱罗定理。此外,17世纪初,荷兰的w.斯涅耳首创三角测量。随后望远镜、测微器、水准器等发明,测量仪器精度大幅度提高,为大地测量学的发展奠定技术基础。17世纪末,大地测量学形成至卫星大地测量的出现,这一阶段的大地测量学通常称为经典大地测量学。主要标志是以地面测角、测距、水准测量和重力测量为技术手段解决陆地区域性大地测量问题。弧度测量、三角测量、几何高程测量以及椭球面大地测量理论的发展,形成几何大地测量学;建立了重力场的位理论并发展了地面重力测量,形成物理大地测量学。

弧度测量

1683~1718年,法国卡西尼父子(G.D.Cassini和J.Cassini)在通过巴黎的子午圈上用三角测量法测量弧幅达8°20’的弧长,推算出地球椭球的长半轴和扁率。由于天文纬度观测没有达到必要的精度,加之两个弧段相近,以致得出了负的扁率值,即地球形状是两极伸长的椭球,与惠更斯根据力学定律作出的推断正好相反。为了解决这一疑问,法国科学院于1735年派遣两个测量队分别赴高纬度地区拉普兰(位于瑞典和芬兰的边界上)和近赤道地区秘鲁进行子午弧度测量,全部工作于1744年结束。两处的测量结果证实纬度愈高,每度子午弧愈长,即地球形状是两极略扁的椭球。至此,关于地球形状的物理学论断得到了弧度测量结果的有力支持。

另一个的弧度测量是J.B.J.德朗布尔于1792~1798年间进行的弧幅达9°40’的法国子午弧的测量。由这个新子午弧和1735~1744年间测量的秘鲁子午弧的数据,推算了子午圈一象限的弧长,取其千万分之一作为长度单位,命名为一米。这是米制的起源。

从18世纪起,继法国之后,一些欧洲也都先后开展了弧度测量工作,并把布设方式由沿子午线方向发展为纵横交叉的三角锁或三角网。这种工作不再称为弧度测量,而称为天文大地测量。清代康熙年间(1708~1718)为编制《皇舆全览图》,曾实施大规模的天文大地测量。在这次测量中,也证实高纬度的每度子午弧比低纬度的每度子午弧长。另外,清代康熙还决定以每度子午弧长为200里来确定里的长度。

几何大地测量

19世纪起,许多都开展全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图提供大量地面点的几何位置。这就推动了几何大地测量的发展。

①为了检校天文大地测量的大量观测数据,求出最可靠的结果和评定观测精度,法国A.一M.勒让德于1806年首次发表最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯在1794年已经应用这一理论推算小行星的轨道,此后又用最小二乘法处理天文大地测量成果,把它发展到相当完善的程度,形成测量平法,至今仍广泛应用于大地测量。

②椭球面上三角形的解算和大地坐标的推算,高斯于1828年在其著作《曲面通论》中提出椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式,高斯于1822年发表椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的方法,至今仍在广泛应用。

③利用天文学大地测量成果推算地球椭球长半轴和扁率,德国F.R.赫尔墨特提出在天文大地网中所有天文点的垂线偏平方和为最小的条件下,解算与区域大地水准面拟合的椭球参数及其在地球体中定位的方法。以后这一方法被称为面积法。

物理大地测量

自1743年克莱罗发表了《地球形状理论》之后,物理大地测量的最重要发展是1849年英国的G.G.斯托克斯提出的斯托克斯定理。根据这一定理,可以利用地面重力测量结果研究大地水准面形状。但它要求首先将地面重力测量结果归算到大地水准面上,由于地壳密度未知,这种归算不能严格实现。尽管如此,斯托克斯定理还是推动了大地水准面形状的研究工作。大约100年后,的M.S.莫洛坚斯基于1945年提出莫洛坚斯基理论,它不需任何归算,便可以直接利用地面重力测量数据严格地求定地面点到参考椭球面的距离(大地高程)。它避开了理论上无法严格求定的大地水准面,直接求定地面点的大地高程。利用这种高程,可把大地测量的地面观测值准确地归算到椭球面上,使天文大地测量的成果处理不因归算不准确而带来误。伴随着莫洛坚斯基理论产生的天文重力水准测量方法和正常高系统已被许多采用。这是在卫星重力测量技术出现以前,由地面重力测量研究地球形状和确定地球重力场的理论和方法,称为经典物理大地测量。

现代大地测量

经典大地测量由于其主要测量技术手段(测角和测边)和方法本身的局限性,测量精度已近极限,测量范围也难于达到占地球面积70%的海洋和陆地自然条件恶劣的地区(高原、沙漠和原始森林等)。1957年颗人造地球卫星发射成功后,利用人造卫星进行大地测量成为主要技术手段,从此发展到现代大地测量。其标志是产生卫星大地测量,突破了米级测量精度,从区域性相对大地测量发展到全球的大地测量,从测量静态地球发展到可测量地球的动力学效应。

卫星大地测量

1966年美国的W.M.考拉发表《卫星大地测量理论》一书,为卫星大地测量的发展奠定基础。同时,对卫星跟踪观测定轨技术得到迅速发展,从照相观测发展到卫星激光测距(8LR)和卫星多普勒观测。20世纪70年代美国首先建立卫星多普勒导航定位系统,根据精密测定的卫星轨道根数,能够以土1米或更高的精度测定任一地面点在全球大地坐标系中的地心坐标;90年代美国又发展了新一代导航定位系统,即全球定位系统(GPS),以其廉价、方便、全天候的优势迅速在全球普及,成为大地测量定位的常规技术。发展了全球导航卫星系统(GLONASS),欧洲正在启动伽利略全球卫星导航定位系统(Galileo)。卫星大地测量不仅广泛用于高精度测定地面点的位置,还用于确定全球重力场,并形成一门新的大地测量分支,即卫星重力学。

卫星重力测量

卫星激光测距对卫星的跟踪测量可以测定卫星轨道的摄动,当分离出占摄动主要部分的地球引力摄动,由此推算地球引力位球谐展开的低阶位系数。20世纪70年代开始卫星雷达测高,后又研制和发展了多代卫星测高系统,用于测定平均海面的大地高,确定海洋大地水准面,并反求海洋重力异常,分辨率优于lO千米,精度优于分米级。

动力大地测量

SLR和甚长基线干涉测量(VLBI),可以厘米级或更优的精度监测板块的运动速率、极移和地球自转速率的变化。GPS更能以毫米级精度测定板块内地块的相对运动及地壳形变,还广泛用于监测断层和活动、极地冰原和陆地冰川的运动和变化以及冰后回弹现象。

海洋大地测量

卫星测高已成为确定高分辨率全球海洋大地水准面的最廉价有效的手段,GPS也成为海洋导航定位的主要工具,定位精度比传统的天文导航和电导航精度提高1~2个数量级,多波束声呐测深相对精度已达到或接近111000。海底大地控制网和海底地形测量的规模和精度在不断提高。[2]

大地测量学与测量工程专业介绍_研究方向_就业前景分析

考研 选专业时,大地测量学与测量工程 专业怎么样 是广大考研朋友们十分关心的问题,以下大地测量学与测量工程 专业介绍 ,包含:大地测量学与测量工程专业研究方向、培养目标、 就业方向 和 就业前景 等,同时还了一些大地测量学与测量工程专业比较不错的学校,希望对大家有所帮助。

大地测量学与测量工程是地球科学的一门分支学科,它既是一门测绘科学与技术的基础学科,又是一门工程应用学科。本学科以精密工程测量、变形监测理论与方法、空间信息测量学理论与应用和多系统定位信息融合理论与方法为主要特色和研究方向,研究和解决各种有特殊精度要求的测量技术和测量方法,建立大型工程测控理论与监测技术;研究各种安全模型和监测系统的网络化理论,建立安全信息管理系统及专家评判系统;研究卫星导航和精密定位技术,建立多系统定位信息融合模型与方法等。

1. 大地测量学与测量工程专业研究方向

该专业所包含的研究方向有:

(01)现代测量数据处理的理论与方法

(02)大型工程精密测量

(03)卫星大地测量与应用

(04)地壳形变监测与大地测量反演

(05)组合导航与应用

(06)工业测量

2. 大地测量学与测量工程专业培养目标

通过大地测量学与测量工程培养测绘领域的高层次人才,能够胜任高等教学、科学研究或大型工程技术研发与管理等方面 工作 。要求具有数学、 计算机 应用方面的基础理论知识,具有坚实而深厚的大地测量学与测量工程的基础理论,深入地了解近代大地测量学与测量工程的进展与动态。熟练掌握大地测量学、测量工程的数据采集、资料综合分析与处理的理论和方法。至少掌握一门外语,能熟练 阅读 本专业的外文资料,具有一定的写作能力和进行学术交流的能力。能主持科研工作和组织工程生产的技术设计、规划和实施,并能熟练进行大地测量学与测量工程的信息加工与处理,具有从事与相关学科交叉的科学研究能力,能够从事学科前沿的创新研究工作。

3. 大地测量学与测量工程 专业就业 前景分析

就职部门:高等院校相关专业的教学和科研工作;在国土、城市、矿业、电力、水利、通讯、地质、交通、林业、环境、海洋、计算机、信息、建筑等的规划、勘测设计和技术管 理工 作;相关部门的技术管理和工作;大型公司和企业的技术开发和技术管理工作。

大地测量学,又称为测地学。根据德国大地测量学家F.R. Helmert的经典定义,大地测量学是一门量测和描绘地球表面的科学。也就是研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。它也包括确定地球重力场和海底地形,是测绘学的一个分支。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。