刚体转动惯量的测定实验结论 刚体转动惯量的测定实验结论

游戏日常 2025-02-08 21:28:54

三线摆测物体转动惯量 实验结果和误分析该怎么写?

在推导三线摆测刚体转动惯量公式的过程中,转动惯量的误主要来源于扭动的角位移过大以及作中测量周数、晃动和长度测量失误。

刚体转动惯量的测定实验结论 刚体转动惯量的测定实验结论刚体转动惯量的测定实验结论 刚体转动惯量的测定实验结论


刚体转动惯量的测定实验结论 刚体转动惯量的测定实验结论


三线摆测物体的转动惯量,如果扭摆角度超过5度就不能近似看做是简谐运动了。扭摆,只有在小角度情况下,回复力矩才能看做是线性回复力矩,才能使用简谐运动公式来计算周期。所以测量结果的误会变得很大。三线摆测物体的转动惯量 扭摆角度超过5°,对实验结果有何影响。

扩展资料:

转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。

一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加。

参考资料来源:

大学物理实验报告——刚体转动惯量

刚体绕轴转动惯性的度量.其数值为J=∑ miri^2,

式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离.

;求和号(或积分号)遍及整个刚体.转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关.规则形状的均质刚体,其转动惯量可直接计得.不规则刚体或非均质刚体的转动惯量,一般用实验法测定.转动惯量应用于刚体各种运动的动力学计算中.

描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积.由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者.

还有垂直轴定理:垂直轴定理

一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和.

表达式:Iz=Ix+Iy

刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量.由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量.

转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2.

刚体绕某一点转动的惯性由更普遍的惯量张量描述.惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小.

补充对转动惯量的详细解释及其物理意义:

先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小).

E=(1/2)mv^2 (v^2为v的2次方)

把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)

得到E=(1/2)m(wr)^2

由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,

K=mr^2

得到E=(1/2)Kw^2

K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量.

这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题.

为什么变换一下公式就可以从能量角度分析转动问题呢?

1、E=(1/2)Kw^2本身代表研究对象的运动能量

2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息.

3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质

心运动情况.

4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积

分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样)

所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值.

若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV

其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离.

补充转动惯量的计算公式

转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示.

对于杆:

当回转轴过杆的中点并垂直于轴时;J=mL^2/12

其中m是杆的质量,L是杆的长度.

当回转轴过杆的端点并垂直于轴时:J=mL^2/3

其中m是杆的质量,L是杆的长度.

对与圆柱体:

当回转轴是圆柱体轴线时;J=mr^2/2

其中m是圆柱体的质量,r是圆柱体的半径.

转动惯量定理:M=Jβ

其中M是扭转力矩

J是转动惯量

β是角加速度

例题:

现在已知:一个直径是80的轴,长度为500,材料是钢材.计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?

分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L.

根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s

电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2.

所以M=Jβ

=mr^2/2△ω/△t

=ρπr^2hr^2/2△ω/△t

=7.810^3 3.14 0.04^2 0.5 0.04^2 /2 500/60/0.1

=1.2786133332821888kg/m^2

单位J=kgm^2/s^2=Nm

用三线摆测量刚体的转动惯量实验的实验结论?急求。谢谢!

三线摆的结构如图4.2.3-1所示。三线摆是在上圆盘的圆周上,沿等边三角形的顶点对称地连接在下面的一个较大的均匀圆盘边缘的正三角形顶点上。

当上、下圆盘水平三线等长时,将上圆盘绕竖直的中心轴线O1O转动一个小角度,借助悬线的张力使悬挂的大圆盘绕中心轴O1O作扭转摆动。同时,下圆盘的质心O将沿着转动轴升降,如图4.2.3-2所示。=H是上、下圆盘中心的垂直距离;=h是下圆盘在振动时上升的高度;是上圆盘的半径;是下圆盘的半径;α是扭转角。

由于三悬线能力相等,下圆盘运动对于中心轴线是对称的,我们仅分析一边悬线的运动。用L表示悬线的长度,见图4.2.3-2。当下圆盘扭转一个角度α时,下圆盘的悬线点移动到,下圆盘上升的高度为,与其他几何参量的关系可作如下考虑。从上圆盘A点作下圆盘的垂线,与升高前后的下圆盘分别相交于和。

在直角三角形中

(1)

由图4.2.3-2可知,,故上式可写成:

(2)

由可知,,因而有

(3)

在直角三角形中

(4)

式中设悬丝不伸长,则

因而上式可写为:

(5)

比较式(2)和式(5),消去后得:

(6)

cosα按级数展开

考虑到α是小量,略去高于的后各项,又因相对于L和H而言为无穷小量,故可略去高于一阶的微量,由式(6)可得:

(7)

当下圆盘的扭转角α很小时,下圆盘的振动可以看作理想的简谐振动。其势能Ep和动能Ek分别为:

(8)

式中 是下圆盘的质量, 为重力加速度, 为圆频率, 为下圆盘的上升速度, 为圆盘对轴OO1的转动惯量。

若忽略摩擦力的影响,则在重力场中机械能守恒:

恒量 (9)

因下圆盘的转动能远大于上下运动的平动能,即

于是近似有

恒量 (10)

将式(7)代入式(10)并对t求导,可得:

(11)

该式为简谐振动方程,可得方程的解为:

因振动周期 ,代入上式得:

故有:

(12)

由此可见,只要准确测出三线摆的有关参数 、 、 、 和 ,就可以地求出下圆盘的转动惯量 。

如果要测定一个质量为 的物体的转动惯量,可先测定无负载时下圆盘的转动惯量 ,然后将待测物体放在下圆盘上,并注意,必须让待测物的质心恰好在仪器的转动轴线上。测定整个系统的转动周期 ,则系统的转动惯量 可由下式计算:

(13)

式中 为放了待测物之后的上、下盘间距,一般可以认为 。待测物体的转动惯量 为:

(14)

用这种方法,在满足实验要求的条件下,可以测定任何形状物体的转动惯量。

我们知道物体的转动惯量取决于物体形状质量分布以及相对于转轴的位置。因此,物体的转动惯量随转轴不同而改变,转轴可以通过物体内部,也可以在物体外部。就两个平行轴而言,物体对于任意轴的转动惯量 ,等于通过此物体以质心为轴的转动惯量 加上物体质量 与两轴间距离平方的乘积。 这就是平行轴定理,其表达式为:

(15)

通过改变待测物质心与三线摆中心转轴的距离,测量 与 的关系便可验证转动惯量的平行轴定理。

测转动惯量的方法还有多种,常用的扭摆是其中之一。扭摆法测转动惯量的原理是使物体作扭转摆动,由摆动周期及其他参数的测定计算出物体的转动惯量。此法可测定不同形状的物体的转动惯量和弹簧的扭转系数,可与理论值进行比较以及验证转动惯量平行轴定理。

实验内容

1. 测定仪器常数 、 、 和 。

恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆的上、下圆盘的水平,使仪器达到测量状态。

2. 测量下圆盘的转动惯量 ,并计算其不确定度。

转动三线摆上方的小圆盘,使其绕自身轴转一角度α,借助线的张力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测 的方法,使周期的测量不确定度小于其它测量量的不确定度。利用式(12),求出 ,并推导出不确定度传递公式,计算 的不确定度。

3. 测量圆环的转动惯量

在下圆盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量系统的转动惯量。测量圆环的质量 和内、外直径 、 。利用式(14)求出圆环的转动惯量 。并与理论值进行比较,求出相对误。

圆环绕中心轴

上述理论值和实验值很好的拟合,百分比误较小,可以很好的验证移轴定理

动力法测量转动惯量得出结论

转动惯量是描述刚体转动惯性的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转轴的转动惯量。对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测量。

实验上测量刚体的转动惯量,一般都是使刚体以某一形式运动,通过描述这种运动的特定物理量与转动惯量的关系来间接地测定刚体的转动惯量。测定转动惯量的实验方法较多,常用的有动力法和振动法两种。本实验采用动力法、利用“转动惯量实验仪”来测定刚体的转动惯量。为了便于与理论计算比较,本实验采用形状规则的待测物体。

求助学长学姐,物理实验,刚体转动惯量测定

转动惯量是刚体转动时惯性的量度, 其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 例如:电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,地测定转动惯量,都是十分必要的。对于质量分布均匀,外形不复杂的物体可以从它的外形尺寸的质量分布用公式计算出相对于某一确定转轴的转动惯量。对于几何形状简单、质量分布均匀的刚体可以直接用公式计算出它相对于某一确定转轴的转动惯量。 而对于外形复杂和质量分布不均匀的物体只能通过实验的方法来地测定物体的转动惯量,因而实验方法就显得更为重要。

测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆 ,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验 的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。

实验原理

三线摆的结构如图4.2.3-1所示。三线摆是在上圆盘的圆周上,沿等边三角形的顶点对称地连接在下面的一个较大的均匀圆盘边缘的正三角形顶点上。

当上、下圆盘水平三线等长时,将上圆盘绕竖直的中心轴线O1O转动一个小角度,借助悬线的张力使悬挂的大圆盘绕中心轴O1O作扭转摆动。同时,下圆盘的质心O将沿着转动轴升降,如图4.2.3-2所示。=H是上、下圆盘中心的垂直距离;=h是下圆盘在振动时上升的高度;是上圆盘的半径;是下圆盘的半径;α是扭转角。

由于三悬线能力相等,下圆盘运动对于中心轴线是对称的,我们仅分析一边悬线的运动。用L表示悬线的长度,见图4.2.3-2。当下圆盘扭转一个角度α时,下圆盘的悬线点移动到,下圆盘上升的高度为,与其他几何参量的关系可作如下考虑。从上圆盘A点作下圆盘的垂线,与升高前后的下圆盘分别相交于和。

在直角三角形中

(1)

由图4.2.3-2可知,,故上式可写成:

(2)

由可知,,因而有

(3)

在直角三角形中

(4)

式中设悬丝不伸长,则

因而上式可写为:

(5)

比较式(2)和式(5),消去后得:

(6)

cosα按级数展开

考虑到α是小量,略去高于的后各项,又因相对于L和H而言为无穷小量,故可略去高于一阶的微量,由式(6)可得:

(7)

当下圆盘的扭转角α很小时,下圆盘的振动可以看作理想的简谐振动。其势能Ep和动能Ek分别为:

(8)

式中 是下圆盘的质量, 为重力加速度, 为圆频率, 为下圆盘的上升速度, 为圆盘对轴OO1的转动惯量。

若忽略摩擦力的影响,则在重力场中机械能守恒:

恒量 (9)

因下圆盘的转动能远大于上下运动的平动能,即

于是近似有

恒量 (10)

将式(7)代入式(10)并对t求导,可得:

(11)

该式为简谐振动方程,可得方程的解为:

因振动周期 ,代入上式得:

故有:

(12)

由此可见,只要准确测出三线摆的有关参数 、 、 、 和 ,就可以地求出下圆盘的转动惯量 。

如果要测定一个质量为 的物体的转动惯量,可先测定无负载时下圆盘的转动惯量 ,然后将待测物体放在下圆盘上,并注意,必须让待测物的质心恰好在仪器的转动轴线上。测定整个系统的转动周期 ,则系统的转动惯量 可由下式计算:

(13)

式中 为放了待测物之后的上、下盘间距,一般可以认为 。待测物体的转动惯量 为:

(14)

用这种方法,在满足实验要求的条件下,可以测定任何形状物体的转动惯量。

我们知道物体的转动惯量取决于物体形状质量分布以及相对于转轴的位置。因此,物体的转动惯量随转轴不同而改变,转轴可以通过物体内部,也可以在物体外部。就两个平行轴而言,物体对于任意轴的转动惯量 ,等于通过此物体以质心为轴的转动惯量 加上物体质量 与两轴间距离平方的乘积。 这就是平行轴定理,其表达式为:

(15)

通过改变待测物质心与三线摆中心转轴的距离,测量 与 的关系便可验证转动惯量的平行轴定理。

测转动惯量的方法还有多种,常用的扭摆是其中之一。扭摆法测转动惯量的原理是使物体作扭转摆动,由摆动周期及其他参数的测定计算出物体的转动惯量。此法可测定不同形状的物体的转动惯量和弹簧的扭转系数,可与理论值进行比较以及验证转动惯量平行轴定理。

实验内容

1. 测定仪器常数 、 、 和 。

恰当选择测量仪器和用具,减小测量不确定度。自拟实验步骤,确保三线摆的上、下圆盘的水平,使仪器达到测量状态。

2. 测量下圆盘的转动惯量 ,并计算其不确定度。

转动三线摆上方的小圆盘,使其绕自身轴转一角度α,借助线的张力使下圆盘作扭摆运动,而避免产生左右晃动。自己拟定测 的方法,使周期的测量不确定度小于其它测量量的不确定度。利用式(12),求出 ,并推导出不确定度传递公式,计算 的不确定度。

3. 测量圆环的转动惯量

在下圆盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量系统的转动惯量。测量圆环的质量 和内、外直径 、 。利用式(14)求出圆环的转动惯量 。并与理论值进行比较,求出相对误。

圆环绕中心轴的转动惯量的理论值可由下式计算。

式中 和 分别为圆环内、外直径。

4. 验证平行轴定理

将质量和形状尺寸相同的两金属圆柱重叠起来放在下圆盘上,注意使质心与下圆盘的质心重合。测量转动轴通过圆柱质心时,系统的转动惯量 。然后将两圆柱对称地置于下圆盘中心的两侧。测量此时系统的转动惯量 。

测量圆柱质心到中心转轴的距离 ,代入式(15),计算 ,并与测量值 比较。

改变 值,测量一组 ,并作 ~ 的曲线,由曲线求出 和 ,并与实验测量值比较。由此结果的比较,给出结论。

转动惯量实验报告

一、实验目的:

1、用实验方法验证刚体转动定律,并求其转动惯量;

2、观察刚体的转动惯量与质量分布的关系

3、学习作图的曲线改直法,并由作图法处理实验数据。

二、实验原理:

1、刚体的转动定律:具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比。通过实验的方法,可求得难以用计算方法得到的转动惯量。

2、应用转动定律求转动惯量:待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。所以可得到近似表达式: 2mgr =hI/ rt 式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据用实验的方法求得转动惯量I。

三、验证转动定律:

求转动惯量 从出发,考虑用以下两种方法: 2A.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下 落高度h,式变为: 2M = K1/ t 2式中K1 =hI/ gr为常量。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

四、实验仪器:

刚体转动仪,滑轮,秒表,砝码。

五、实验内容:

1、调节实验装置:

调节转轴垂直于水平面 调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2、刚体质量分布对转动惯量的影响

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。

3、测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。