导语:上了高中之后,数学对很多学生来是件头疼的事情。尤其是对女生来讲。但是,我想告诉大家的是:其实数学是得分的科目,同时数学又是高考成败的关键。学好数学,基础是关键。牢固并且灵活运用数学的基础知识很非常重要的!
高中知识清单数学电子版 高中数学知识清单完整版pdf
高中知识清单数学电子版 高中数学知识清单完整版pdf
高中数学知识点框架清单:
1、知识点
2、不等式知识点
3、常用逻辑用语知识点
4、导数及其应用知识点
5、概率知识点
6、函数、基本初等函数知识点
7、几何证明选讲知识点
8、计数原理知识点
9、解三角形知识点
10、矩阵与变换知识点
11、空间几何知识点
12、空间向量及其应用知识点
13、框图知识点
14、平面向量知识点
15、曲线与方程知识点
16、三角函数知识点
17、数列知识点
18、数系的扩充与复数的引入知识点
19、算法初步知识点
20、随机变量及其分布列知识点
21、统计与统计案例知识点
22、推理与证明知识点
23、圆柱、圆锥与圆锥曲线知识点
24、圆锥曲线知识点
25、直线与圆知识点
26、坐标系与参数方程知识点
高中数学有哪些重点公式?
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctg
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h
正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
【课外阅读】:
影响高中数学成绩的原因及解决方法
作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟,投入了大量的时间与精力.然而并非人人都是成功者,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,个跟头就栽在数学上。这种现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的,本文仅就从学生的学习状态方面浅谈如下:
面对众多初中学习的成功者沦为高中学习的失败者,有人对他们的学习状态进行了研究、调查,表明,造成成绩滑坡的主要原因有以下几个方面.
1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.没有真正理解所学内容。
2.学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,记硬背.也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.
3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途“卡壳”.
4.进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等.客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的'.
解决对策:
1.培养良好学习习惯。良好的学习习惯包括制定、课前自学、专心上课、及时复习、作业、解决疑难、系统小结和课外学习几个方面.
制定使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力.但一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.
课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上.
上课是理解和掌握基本知识、基本技能和基本方法的关键环节.“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼.
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”.
作业是学生通过自己的思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”.
解决疑难是指对完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神,做错的作业再做一遍.对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由“活”到“悟”.
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养学习和工作能力,激发求知欲与学习热情.
2.循序渐进,防止急躁
由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想凭几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振.针对这些情况,学生应懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.
3.研究学科特点,寻找学习方法
数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任.它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高.学习数学一定要讲究“活”,只看书不做题不行,埋头做题不总结积累不行,对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找学习方法.华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理.方法因人而异,但学习的四个环节(预习、上课、整理、作业)和一个步骤(复习总结)是少不了的。
求薛金星的高中数学:基础知识手册pdf格式电子书 我的建议是不需要买这么多的教辅,如果仅仅是需要知识点总结,您不妨买当地教育主管部门出版的备考实用小手册。因为备考期间,您是没有太多时间做完看完他们的,他们的下场只是堆成山留给下一届。如果是为了提高成绩,请购买您所在省的重点中学出的模拟卷子,在做题过程中把涉及到的相关知识点整理成薄薄一册,不但巩固了基础知识,也使你发现运用他们的规律。
高中数学教材知识资料包和薛金星的高中数学基础知识手册哪个好
我当时只考了,现在感觉没有那个的好或不好
都是相对的,反正有名的都只有那么几个老师,每个人都有自己的特长,关键看你喜欢谁的解题方式,
当时我高考时反正同一本书是买了好几个人的, (但是千万不要全都看,选一本自己喜欢的重要看,其它的就随便看一下不同之外对比一下), 就当作投资吧,
薛金星初中数学基础知识手册
当当网上有,好
薛金星的小学基础知识手册怎么样
薛金星的资料都还不错,小学手册整体来说都很棒,看看记记有帮助
薛金星的《化学基础知识手册》怎么样?, 薛金星的基础知识手册能不能代替课本?
高一的时候买些基础题做做
你买多了就知道 参考书都是互相抄的
介绍一本 重难点手册 横不错
也不贵
上高一 需要买薛金星的基础知识手册吗
你可以在暑适当的翻翻课本,了解一下大体内容,心中有底,个人觉得不用学。我用的就是薛金星的,感觉不错,我买的是化学的,重点方程式很全。
《高中基础知识手册》(薛金星)怎么样?
我们老师给我们集体定的语文,感觉里面东西很多比较烦,就是考试用不到。如果要买语文的话,建议选择性去读,还是不错的
怎样解题 高中数学 薛金星的
《怎样解题:高中数学解题方法与技巧(第8次修订版)》全面体现创新教育思想,秉承“教学研究来源于教学、服务于教学”的编写理念,本着真正教给学生学会“怎样解题”的目的,遵循实用性、针对性和可作性的原则,组织了一批特高阶骨干教师和教研员反复研究论证,精心打造而成。
需要买薛金星的基础知识手册吗若买,哪科较好
都不好,数理化生除了就生物还可以。买绿卡知识大全,那知识点比薛金星的多不少,知识清单也可以,但是基础讲解的密度也不如知识大全。
1. 曲一线知识小清单淘宝
曲一线知识小清单淘宝 1.曲一线高中生物知识清单好不,我是高二新生
曲一线的没有研究过无法做出评论。
但给你教育出版社的《高中生物 基础知识手册》这本里边的清单还是比较详细的。适合轮学习适合配合记忆。
另外5年高考3年模拟里设计的知识清单---突破方法---习题的模式也不错。不过这个比较适合3本必修都学完之后的总复习。
这些辅导材料(知识清单类)一般都是大同小异的,关键还是要看进去,建议有一本也就足够了。而且材料的侧重点一般是不同的,总会有些没有提及的地方还需要自己做总结,所以自己做好知识体系的构建,辅导材料只是方便丰富自己的知识网络的,找到属于自己的学习方法和记忆方法才是王道,别被辅导材料的模式限制了自己的思路。
教材和辅导材料没有的,只要你会用效果都会不错。
原创,希望有所帮助。
2.曲一线知识清单和世纪金榜哪个好
其实主要看你的成绩,如果你的成绩偏好的话,世纪金榜更好,如果稍微有点,需要补充基础知识的话,就选用知识清单,知识清单的知识点归纳比较基础和详细,世纪金榜偏难。如果你成绩比较拔尖的话,用曲一线的五年高考三年模拟,或者三年高考两年模拟,这两本书没有太大的难度区别,三·二的题更多一些,亲根据自己的需要选择吧。
其实到了高三,很多资料上面的题重复都很多,曲一线在全国各地的高三都是比较出名的··也比较好···希望亲自己比较选择···
祝高考取得好成绩咯····
高中数学基础知识梳理(数学小飞侠)
链接:
提取码: 9bdp 这段内容后打开百度网盘手机App,作更方便哦
若资源有问题,欢迎追问~
自己翻阅数学书整理,这样效果!
您好!一般五三是很好的复习资料。包括历年的试题都有。知识清单在每一章的“五年高考”和“三年模拟”部分的中间。可以认真看一下。有些科目还是以填空的形式给出的,适合基础较薄弱的同学及时练习用。
高中高一数学必修1各章知识点总结
章 与函数概念
一、有关概念
1、的含义:某些指定的对象集在一起就成为一个,其中每一个对象叫元素。
2、的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的,中的元素是确定的,任何一个对象或者是或者不是这个给定的的元素。
(2)任何一个给定的中,任何两个元素都是不同的对象,相同的对象归入一个时,仅算一个元素。
(3)中的元素是平等的,没有先后顺序,因此判定两个是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)元素的三个特性使本身具有了确定性和整体性。
3、的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示:A={我校的篮球队员},B={1,2,3,4,5}
2.的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N或 N+ 整数集Z 有理数集Q 实数集R
关于“属于”的概念
的元素通常用小写的拉丁字母表示,如:a是A的元素,就说a属于A 记作 a∈A ,相反,a不属于A 记作 a?A
列举法:把中的元素一一列举出来,然后用一个大括号括上。
描述法:将中的元素的公共属性描述出来,写在大括号内表示的方法。用确定的条件表示某些对象是否属于这个的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、的分类:
1.有限集 含有有限个元素的
2.无限集 含有无限个元素的
3.空集 不含任何元素的 例:{x|x2=-5}
二、间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一。
反之: A不包含于B,或B不包含A,记作A B或B A
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
结论:对于两个A与B,如果A的任何一个元素都是B的元素,同时,B的任何一个元素都是A的元素,我们就说A等于B,即:A=B
① 任何一个是它本身的子集。AíA
②真子集:如果AíB,且A1 B那就说A是B的真子集,记作A B(或B A)
③如果 AíB, BíC ,那么 AíC
④ 如果AíB 同时 BíA 那么A=B
3. 不含任何元素的叫做空集,记为Φ
规定: 空集是任何的子集, 空集是任何非空的真子集。
三、的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于A或属于B的元素所组成的,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个,A是S的一个子集(即 ),由S中所有不属于A的元素组成的,叫做S中子集A的补集(或余集)
记作: CSA 即 CSA ={x | x?S且 x?A}
SCsA
A(2)全集:如果S含有我们所要研究的各个的全部元素,这个就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于A中的任意一个数x,在B中都有确定的数f(x)和它对应,那么就称f:A→B为从A到B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的{f(x)| x∈A }叫做函数的值域.
注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的;3 函数的定义域、值域要写成或区间的形式.
定义域补充
能使函数式有意义的实数x的称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.
(又注意:求出不等式组的解集即为函数的定义域。)
构成函数的三要素:定义域、对应关系和值域
再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
值域补充
(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的C,叫做函数 y=f(x),(x ∈A)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的,如果按某一个确定的对应法则f,使对于A中的任意一个元素x,在B中都有确定的元素y与之对应,那么就称对应f:A B为从A到B的一个映射。记作“f:A B”
给定一个A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从A到B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)A中的每一个元素,在B中都有象,并且象是的;(Ⅱ)A中不同的元素,在B中对应的象可以是同一个;(Ⅲ)不要求B中的每一个元素在A中都有原象。
常用的函数表示法及各自的优点:
1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值
补充一:分段函数 (参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
例如: y=2sinX y=2cos(X2+1)
7.函数单调性
(1).增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2 必须是对于区间D内的任意两个自变量x1,x2;当x1 (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x1,x2∈D,且x1 (B)图象法(从图象上看升降)_ (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下: 函数 单调性 u=g(x) 增增 减减 y=f(u) 增减 增减 y=f[g(x)] 增减 减增 注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗? 8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 10.函数(小)值(定义见课本p36页) 1 利用二次函数的性质(配方法)求函数的(小)值2 利用图象求函数的(小)值3 利用函数单调性的判断函数的(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ . 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。 注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: ,0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1) · ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。