数字电视601(数字电视怎样调到电视的频道)

游戏笔记 2025-01-04 10:35:43

d上显示601是什么意思

电视台标清的色彩空间标准。d上显示的601是电视台标清的色彩空间标准,BT.709是当下主流的蓝光、高清电视台、网络流媒体用的色彩标准。d又被称为高密度数字视频光盘。它是比VCD更新一代的产品。DVD分别采用MPEG—2技术和AC—3标准对视频和音频信号进行压缩编码。它可以记录135分钟的图像画面。与VCD不同的是它的图像清晰度可达720线。

数字电视601(数字电视怎样调到电视的频道)数字电视601(数字电视怎样调到电视的频道)


数字电视601(数字电视怎样调到电视的频道)


电视信号用什么编码的

这个我真的不懂,给你查点资料

数字电视信源编码的一些主要技术和标准,包括数字演播室标准ITU--601,压缩编码的基本原理和方法,图像压缩编码标准H261,JPEG和MPEG,以及作为数字电视信源编码标准输出的MPEG--2码流的形成.

准数字电视和数字高清晰度电视在内的数字电视体系的开发研究正加紧进行。美国已完成称为GA的数字高清晰度电视的标准制定及其进入实用的时间表,欧洲则在开发的数字电视方案,并制定了数字电视广播DVB的标准。这一切都是以数字电视信源编码的一系列技术与标准的成熟为基础的。信源编码作为数字电视系统的核心构成部分,直接决定了数字电视的基本格式及其信号编码效率,决定了数字电视最终如何在实际的系统中实现。

一.数字电视的信源编码

一个完整的数字电视系统包括数字电视信号的产生、处理、传输、接收和重现等诸多环节。数字电视信号在进入传输通道前的处理过程一般如图1所示:

电视信号在获取后经过的个处理环节就是信源编码。信源编码是通过压缩编码来去掉信号源中的冗余成分,以达到压缩码率和带宽,实现信号有效传输的目的。信道编码是通过按一定规则重新排列信号码元或加入辅助码的办法来防止码元在传输过程中出错,并进行检错和纠错,以保证信号的可靠传输。信道编码后的基带信号经过调制,可送入各类通道中进行传输。目前数字电视可能的传输通道包括卫星,地面传输和有线传输等。

信源编码的目的是通过在编码过程中对原始信号冗余度的去除来压缩码率,因此压缩编码的技术与标准成为信源编码的核心。九十年代以来,各种压缩编码的标准相继推出,其中MPEG-2是专为数字电视《包括标准数字电视和数字高清晰度电视》制定的压缩编码标准。MPEG-2压缩编码输出的码流作为数字电视信源编码的标准输出码流已被广泛认可。目前数字电视系统中信源编码以外的其他部分,包括信道编码,调制器,解调器等,大都以MPEG-2码流作为与之适配的标准数字信号码流。

信源编码的步首先要对模拟电视信号进行取样和模数变换,相应的需要一个统一的标准。数字演播室标准ITU-R601正是为此制定的标准。

二.数字演播室标准ITU-R601

早在七十年代末,英国广播公司和索尼公司就分别展示了其各自开发的彩色数字录像机,成为最早的数字电视编录产品,由此促成了电视信号模数转换规范的产生。1980年,电咨询委员会CCIR提出了电视信号模数转换标准的建议,即称为数字演播室标准的CCIR601。后来CCIR成为电信联盟的电委员会,称为ITU-R,相应的CCIR-601也改称ITU-R601,成为模拟电视向数字电视转变过程中的个标准规范,其分量编码标准如表1所示。

表 1 ITU-R601数字演播室分量编码标准《4:2:2》

参数 电视制式 PAL NTSC

每行取样数 亮度信号 每个色信号

864 858 432 429

取样结构 正交取样,色信号与亮度信号的奇次样值同位

取样频率 亮度信号 每个色信号

13.5兆赫 6.75兆赫

编码方式 亮度和色信号均采用线性PCM,8比特量化

每数字有效行取样数 亮度信号 每个色信号 720 360

量化级数 亮度信号 每个色信号

220 224

参数说明:

1.取样频率:根据奈奎斯特定理,取样频率应至少不低于信号频率的2倍。其次,为便于进行信源编码,取样结构为正交结构,即每个取样点应与其相邻行和相邻帧对齐。为此取样频率必须为行频的整数倍。要同时满足PAL与NTSC的正交取样,取样频率应为两者行频的公倍数。同时,取样频率的选取还必须兼顾码率和带宽。综合考虑上述因素,亮度信号的取样频率定为13.5兆赫。在4:2:2格式中,每个色信号取样数为亮度信号的一半,取样频率定为6.75兆赫;

2.每行取样数:由取样频率除以行频得到每行取样数。为提高编码效率,去掉行场逆程的取样,得到降低了的每数字有效行取样数;

3.编码方式:采用简单的线性PCM编码。量化比特数为8比特,这是一个由实验决定的结果。具体实验显示,8比特量化产生的256级量化级,已完全能满足人眼对亮度与色度层次分辨的需要。

ITU-R601主要是一种取样标准。模拟电视信号据此取样后进行8比特量化和线性PCM编码,即可得到符合数字演播室标准的基带数字信号。但是,由此得到的数字电视信号具有非常高的码率和带宽,难以进入实用。虽然ITU-R601建议早在1980年已经制定,但直到九十年代一系列有效的图像数码压缩技术及相应的标准出现以后,数字电视才得到了迅速的发展。

图像数据的压缩主要基于对各种图像数据冗余度及视觉冗余度的压缩,包括如下一些方法:

1.统计冗余度的压缩:对于一串由许多数值构成的数据来说,如果其中某些值经常出现,而另外一些值很少出现,则这种由取值上的统计不均匀性就构成了统计冗余度,可以对之进行压缩。具体方法是对那些经常出现的值用短的码组来表示,对不经常出现的值用长的码组来表示,因而最终用于表示这一串数据的总的码位,相对于用定长码组来表示的码位而言得到了降低,这就是熵编码的思想。目前用于图像压缩的具体的熵编码方法主要是霍夫曼编码,即一个数值的编码长度与此数值出现的概率尽可能地成反比。 霍夫曼编码虽然压缩比不高,约为1.6:1,但好处是无损压缩,目前在图像压缩编码中被广泛采用。

视频图像在每一点的取值上具有任意性。对于运动图像而言,每一点在一段时间内能取可能的任意值,在取值上具有统计均匀性,难以直接运用熵编码的方法,但可以通过适当的变换编码的方法,如DCT变换,使原图像变成由一串统计不均匀的数据来表示,从而利用霍夫曼编码来进行压缩。

2.空间冗余度的压缩:一幅视频图像相邻各点的取值往往相近或相同,具有空间相关性,这就是空间冗余度。图像的空间相关性表示相邻象素点取值变化缓慢。从频域的观点看,意味着图像信号的能量主要集中在低频附近,高频信号的能量随频率的增加而迅速衰减。通过频域变换,可以将原图像信号用直流分量及少数低频交流分量的系数来表示,这就是变换编码中的正交余弦变换DCT的方法。DCT是JPEG和MPEG压缩编码的基础,可对图像的空间冗余度进行有效的压缩。

视频图像中经常出现一连串连续的象素点具有相同值的情况,典型的如彩条,彩场信号等。只传送起始象素点的值及随后取相同值的象素点的个数,也能有效地压缩码率,这就是行游程编码。目前在图像压缩编码中,行游程编码并不直接对图像数据进行编码,主要用于对量化后的DCT系数进行编码。

3.时间冗余度的压缩:时间冗余度表现在电视画面中相继各帧对应象素点的值往往相近或相同,具有时间相关性。在知道了一个象素点的值后,利用此象素点的值及其与后一象素点的值的值就可求出后一象素点的值。因此,不传送象素点本身的值而传送其与前一帧对应象素点的值,也能有效地压缩码率,这就是分编码DPCM。在实际的压缩编码中,DPCM主要用于各图像子块在DCT变换后的直流系数的传送。相对于交流系数而言,DCT直流系数的值很大,而相继各帧对应子块的DCT直流系数的值一般比较接近,在图像未发生跳变的情况下,其值同直流系数本身的值相比是很小的。

由分编码进一步发展起来的预测编码,是根据一定的规则先预测出下一个象素点或图像子块的值,然后将此预测值与实际值的值传送给接收端。目前图像压缩中的预测编码主要用于帧间压缩编码,方法是先根据一个子块的运动矢量求出下一帧对应子块的预测值及其与实际值的值,接收端根据运动矢量及值恢复出原图像。由于运动矢量及值的数据量低于原图像的数据量,因而也能达到图像数据压缩的目的。

4.视觉冗余度的压缩:视觉冗余度是相对于人眼的视觉特性而言的。人眼对于图像的视觉特性包括:对亮度信号比对色度信号敏感,对低频信号比对高频信号敏感,对静止图像比对运动图像敏感,以及对图像水平线条和垂直线条比对斜线敏感等。因此,包含在色度信号,图像高频信号和运动图像中的一些数据并不能对增加图像相对于人眼的清晰度作出贡献,而被认为是多余的,这就是视觉冗余度。

压缩视觉冗余度的核心思想是去掉那些相对人眼而言是看不到的或可有可无的图像数据。对视觉冗余度的压缩通常已反映在各种具体的压缩编码过程中。如对于DCT系数的直流与低频部分采取细量化,而对高频部分采取粗量化,使得DCT变换能借此压缩码率,并能有效地进行行游程编码。在帧间预测编码中,大码率压缩的预测帧及双向预测帧的采用,也是利用了人眼对运动图像细节不敏感的特性。

图像压缩编码的具体方法虽然还有多种,但大都是建立在上述基本思想之上的。DCT变换,行游程编码,DPCM,帧间预测编码及霍夫曼编码等编码方法,因技术上的成熟,已被有关组织定为压缩编码的主要方法。

四.图像压缩的主要技术与标准

目前有关图像压缩方面的主要标准包括CCITT的H.261,JPEG和MPEG。是分别针对电视电话图像,静止图像和活动图像的压缩编码标准。这几种压缩标准虽然各自针对性不同,但压缩编码方法大体相似。

1.H261

图像压缩编码标准的提出最早源于通讯中对可视电话的研究。经过多年努力,至1980年,电报电话咨询委员会CCITT所属的视频编码专家组的H.261建议被通过,成为可视电话和电话会议的标准。H.261又称Px64,传输码率为Px64kbps,其中P=1-30可变,根据图像传输清晰度的不同,码率变化范围在64kbps至1.92Mbps之间,编码方法包括DCT变换,可控步长线性量化,变长编码及预测编码等。其简化的编码原理框图如图2所示。

图中,DCT变换的输入输出选择开关由帧内/帧间模式选择电路控制。在帧内模式时,开关打到上面,输入信号经DCT变换,线性量化和变长编码后输出,图像只进行帧内压缩。在帧间模式时,开关打到下面,前一帧图像信号经过预测环中的运动补偿后产生一个后帧的预测信号。后帧的实际输入信号与其预测值相减后,在进行一个帧内压缩编码的过程后输出。

图中变长编码器产生的控制信号送量化器以控制其量化步长。当变长编码器的输入中连续出现许多大数值的数据,导致集中出现长的码组,使缓存器接近溢出时,控制信号使量化器的量化步长加大,以降低大数值数据的出现;反之,也可控制量化器以减小其量化步长。在预测环路中由于存在用于恢复前帧信号的反量化器,量化步长控制信号也要送到预测环中的反量化器中。

H.261所针对的可视电话信号最初考虑是在一般电话网中传输的,带宽和码率是其考虑的核心问题。其每帧取样点数比ITU-R601所规定的低许多,且采取抽帧传输的方法,无法满足数字电视压缩编码的要求,但H.261是此前压缩编码数十年研究的结果,成为以后JPEG和MPEG编码方法的重要基础。

2.JPEG

1986年,标准化组织ISO和电报电话咨询委员会CCITT共同成立了联合图像专家组《Joint Photographic Experts Group》,对静止图像压缩编码的标准进行了研究,JPEG小组于1988年提出建议书,1992年成为静止图像压缩编码的标准。JPEG是一个达到数字演播室标准的图像压缩编码标准,其亮度信号与色度信号均按照ITU-R601的规定取样后划分为8x8子块进行编码处理。

JPEG是一种不含帧间压缩的帧内压缩编码方法,其主要编码过程与H.261的帧内编码过程大致相同。输入信号经DCT变换后,按固定的亮度与色度量化矩阵进行非线性量化。对量化后的DCT直流系数进行分编码,交流系数进行行游程编码,再按霍夫曼码表进行变长编码后,送缓存器输出 。

JPEG不含帧间压缩,压缩比较帧内/帧间压缩低。但因为不含帧间压缩,使得各帧在压缩编码后是各自的,这一点对于编辑来说是有利的,可以做到到逐帧的编辑。所以对于活动画面只进行帧内压缩的Motion-JPEG,目前仍然在一些数字电视编录设备,如非线性编辑系统中得到应用。

3.MPEG

1988年,标准化组织ISO和电工委员会IEC共同组建了运动图像专家组《Moving Picture Experts Group》,对运动图像的压缩编码标准进行了研究。1992年和1994年分别通过了MPEG-1和MPEG-2压缩编码标准。

MPEG-1主要是针对运动图像和声音在数字存储时的压缩编码,典型应用如VCD等家用数字音像产品,其编码码率为1.5Mbps。MPEG-2则针对数字电视的视音频压缩编码,对数字电视各种等级的压缩编码方案及图像编码中划分的层次作了详细的规定,其编码码率可从3Mbps到100Mbps。

MPEG的基本编码过程与H.261相似,即通过DCT进行帧间压缩。除了在编码语法上加进了一些特别规定外,与H.261的一个重要不同是MPEG在预测编码中加进了一个双向预测帧B帧,如图3所示。

图中,I帧只进行帧内压缩,是作为预测基准的帧,具有较小的压缩比。由I帧前向预测产生的P帧具有中等压缩比,并与I帧一起成为B帧的预测基准。由此产生的B帧则具有的压缩比。I帧出现的频率及I,B,P帧之间如何组合,MPEG未作具体规定,可由编码器自行选择。如索尼的数字Betacom录像机,为便于地编辑,在压缩编码过程中抽掉了B帧,只有I帧与P帧的组合。

在上述各种图像压缩编码标准中,MPEG-2是专门针对数字电视的。MPEG-2的压缩编码及其标准码流的形成构成了数字电视信源编码的核心。

五.MPEG-2标准码流的形成

符合MPEG-2格式的码流成为数字电视信源编码的标准输出码流。 数字电视信道编码,DVB及MPEG-2等均认同和适应此标准。为了形成统一标准的MPEG-2输出码流,MPEG-2对其压缩编码的适用范围和编码语法,对码流的打包与复用等作了详细具体的规定。

1.MPEG-2的类和级

在对数字电视信号进行压缩编码时,MPEG-2可采用多种编码工具并实现不同层次的清晰度,分别称为MPEG-2的类《Profile》和级《Ll》,具体分为五类四级,如表2所示。

表中,图像清晰度由LOW到HIGH逐级提高,使用的编码工具从SIMPLE到HIGH依次递增。20个可能的组合中有11个已获通过,称为MPEG-2 适用点,其中主类主级MP@ML适用于标准数字电视,主类高级MP@HL则用于高清晰度电视。

2.MPEG-2的层

MPEG-2根据图像块和图像帧的不同组合划分为六层。MPEG-2的层直接决定了编码码流的形成和结构。MPEG-2的层从下至上依次为:

象块层:由8x8个象素点构成的DCT变换基本单元;

宏块层:在4:2:2取样中,一个宏块由4个亮度象块,2个Cr象块和2个Cb 象块构成。另外还有4:2:0取样和4:4:4取样的两种宏块;

像条层:一连串宏块可构成一个像条;

图像层:一系列像条可以构成一幅图像,图像分为I,B,P三类;

图像组层:由相互间相关的一组I,B,P帧组成,I帧为帧;

视频序列层:一系列图像组构成了一个视频序列;

从象块开始从下至上依次编码,并在除象块和宏块外的每一层的开始处加上起始码和头标志,就形成了MPEG-2基本码流(Elementary Stream〕。

3.MPEG-2基本码流的打包与复用

分别从MPEG-2编码器中输出的视频,音频和数据基本码流无法直接送信道传输,需要经过打包和复用,形成适合传输的单一的MPEG-2传输码流,如图4所示。

视频,音频及数据基本码流ES先被打成一系列不等长的PES小包,称为打包的基本码流。每个PES小包带有一个包头,内含小包的种类,长度及其他相关信息。视频,音频及数据的PES小包,按照共同的时间基准,经节目复用后形成单一的节目码流。多路节目码流经传输复用后形成由定长传输小包组成的单一的传输码流,成为MPEG-2信源编码的最终输出信号

在数字化电视信号的信源编码中,根据对图像清晰度的不同要求及其他方面的考虑,可分别采用JPEG、MPEG-1和MPEG-2作为编码方法。其中,MPEG-2由于专门针对数字电视的信源编码制定了一系列的语法和规范并被广泛认可,已成为数字电视广播信源编码的核心技术与标准。

视频质量的数字电视

20世纪80年代中期,电信联盟(ITU)提出了数字电视的概念,并指定了以数字编码形式来传输视频电视信号的个标准,即ITU CCIR601建议,这是兼容标准的而不仅是单个标准。另外,CCIR-601标准规定祯速率为每秒30祯或每秒25祯,扫描模式隔行扫描。

什么是数字电视?

简而言之,数字电视就是指从演播室到发射、传输、接收的所有环节都是使用数字电视信号或对该系统所有的信号传播都是通过由0、1数字串所构成的数字流来传播的,数字信号的传播速率是每秒19.39兆字节,如此大的数据流的传递保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时还由于数字电视可以允许几种制式信号的同时存在,每个数字频道下又可分为几个子频道,从而既可以用一个大数据流——每秒19.39兆字节,也可将其分为几个分流,例如4个,每个的速度就是每秒4.85兆字节,这样虽然图像的清晰度要大打折扣,却可大大增加信息的种类,满足不同的需求。例如在转播一场体育比赛时,观众需要高清晰度的图像,电视台就应采用每秒19.39兆字节的传播;而在进行广播时,观众注意的是内容而不是播音员的形象,所以没必要采用那么高的清晰度,这时只需每秒3兆字节的速度就可以了,剩下16.39兆字节可用来传输别的内容。

目前对数字电视的具体解释主要有两种:

(1)80年代ITT公司研制了一套数字处理芯片,在接收模拟电视信号的情况下,再经模拟高中频处理,经模/数转换成数字信号进行数字处理,以改进图像清晰度。90年代又出现多种具有画中画、倍行和其他质量的、改进的"数字电视机",不过这些电视机接收的仍是模拟电视信号,仍处于模拟传输的模拟系统中,所以只能称为"数字模拟电视机",并不是真正意义上的数字电视。

(2)美国的"数字电视机"(简称DTV)专指地面数字电视广播系统。在这种系统中,除了目前节目制作中还有一部分是模拟的以外,从演播室到发射、传输、接收的所有环节都是使用数字电视信号或对数字电视信号进行处理和调制。而也只有这种接收地面数字电视广播信号的电视机才是名副其实的数字电视机。

数字电视的发展简史: 1948年,电视信号数字化(理论与实践开始);

1980年,电联(现ITU-R)提出601建议(4:2:2,即数字电视基础建议);

1982年,德国ITT研制出一套PAL接收机中使用的数字处理芯片;

19年春,公布JPEG《静止图像编码建议》(草案);

19年秋,公布MPEG-1《活动图像及其伴音编码建议》(草案);

1993年初,万燕VCD机在我国大陆上市;

1994年夏,美国Direc. TV开始数字卫星(SDTV)直接广播;

1994年中秋,欧洲公布DVB《数字视频广播标准》(草案);包括DVB-S和DVB-C,DVB-T,随后又制订了系列标准;

1996年底,美国"联邦通信委员会"(FCC)批准数字电视标准。此间1994年春轮四个方案测试结束,成立"大联盟"(GA);1995年春第二轮测试结束并与秋季制订DTV(数字电视广播)(草案); 1997年4月初,美国FCC会议作出两项重要决定;(1)NTSC向DTV过渡的日程表(2006年底);(2)电视地面广播的政策(含频谱规定);

1998年秋(圣诞节前),DTV包括普通标准数字电视广播SDTV和高清晰度数字电视广播HDTV在美国市场启动。

什么是bt656格式

601是SDTV的数据结构 656是SDTV的intece

709是HDTV的数据结构 1120是HDTV的intece

从数据结构上 都是Y Cb Cr

只是SDTV用4:2:2

HDTV用4:2:0

intece上 其实是一样的 vclk + vid[9:0] 10bit-mode 或者 8bit-mode

主要异是在vclk的频率上 也就是采样频率

656是27Mhz

1120 是72Mhz 或者 74Mhz

有些疑惑的地方:

1、HDTV也是4:2:2

2、数据采样率,SDTV是27M;HDTV,根据帧率不同有变化;支持逐行和隔行两种;典型的帧率有60/30;还有隔行的60,50;具体可以看协议;

对于60/30,采样率分别是74.25和148.5M;

对应到串行数据传输,就是1.425G和2.97G

3、420格式,用于压缩算法

T BT.601和IT BT.656电信联盟(International Telecommunication Union)通信部门(IT)制定的标准。严格来说,IT BT.656应该是隶属IT BT.601的一个子协议。IT BT.601是演播室数字电视编码参数标准,而IT BT.656 则是IT BT.601附件A中的数字接口标准,用于主要数字视频设备(包括芯片)之间采用27Mhzs并口或243Mbs串行接口的数字传输接口标准。

IT BT.601 16位数据传输;Y、U、V信号同时传输,是并行数据,行场同步单独输出。

IT BT.656 8/10位数据传输;不需要同步信号;串行数据传输;传输速率是601的2倍;先传Y,后传UV。行场同步信号嵌入在数据流中。656只是数据传输接口而已,可以说是作为601的一个传输方式。

包含三部分

1:视频信号

2:定时基准信号:

有两个定时基准信号,一个在每个视频数据块的开始(Start of ActiveVideo,SAV),另一个在每个视频数据块的结束(End of Active Video,EAV);每个定时基准信号由4 个字的序列组成,格式如下:FF 00 00 XY (16 进制)头三个是固定前缀,第4 个字包含定义第二场标识、场消隐状态和行消隐状态的信息。XY(MSB9-0)[1,F,V,H,P3,P2,P1,P0,0,0]

其中,F:标记场信息,传输顶场时为0,传输底场时为1

V:标记消隐信息,传输消隐数据时为1,传输有效视频数据时为0

H:标记EAV还是SAV,SAV为0,EAV为1

而 P0~P3为保护比特,其值取决于F、H、V,起到校验的作用

3:辅助信号:

辅助数据信号可以以10 比特形式只在行消隐期间传送,还可以以8 比特形式只在场消隐中的行的有效期间传送。

PS:行消隐:当扫描点到达图像右侧边缘时,扫描点快速返回左侧,重新开始在第1行的起点下面进行第2行扫描,行与行之间的返回过程称为水平消隐

垂直消隐:扫描点扫描完一帧后,要从图像的右下角返回到图像的左上角,开始新一帧的扫描,这一时间间隔,叫做垂直消隐,也称场消隐(VBlank)。

场的组成:

在BT.656标准中,一个场是由三个部分组成的:

场 = 垂直消隐顶场(First Vertical Blanking) + 有效数据行(Active Video) + 垂直消隐底场(Second Vertical Blanking)

对于顶场,有效数据行就是一帧图像的所有偶数行,而底场,有效数据行就是一帧图像的所有奇数行。顶场和底场的空白行的个数也有所不同,那么,对于一个标准的 8bit BT656(4:2:2)SDTV(标清)的视频而言,对于一帧图像,其格式定义如下:

对于PAL制式,每一帧有625行,其中,顶场有效数据288行,底场有效数据也是288行,其余行即为垂直消隐信号。为什么是288行?因为PAL制式的SDTV或者D1的分辨率为 720576,即一帧有576行,故一场为288行。

行的组成:

一行是由4个部分组成:

行 = 结束码(EAV) + 水平消隐(Horizontal Vertical Blanking) + 起始码(SAV) + 有效数据(Active Video)

601编码标准:

601号建议单独规定了电视演播室的编码标准。它对彩色电视信号的编码方式、取样频率、取样结构都作了明确的规定。

一、分量编码:分量编码就是彩色全电视信号在转换成数字形式之前,先被分离成亮度信号和色信号,然后对它们分别进行编码。分量信号(Y、B -- Y、R -- Y)被分别编码后,再合成数字信号。

二、取样频率:例如:在4:2:2等级的编码中,规定亮度信号和色信号的取样频率分别为13.5MHZ和6.75MHZ

三、取样结构:为正交结构,即按行、场、帧重复,每行中的R-Y和B-Y取样与奇次(1,3,5……)Y的取样同位置,即取样结构是固定的,取样点在电视屏幕上的相对位置不变。

四、编码方式:对亮度信号和两个色信号进行线性PCM编码,每个取样点取8比特量化。同时,规定在数字编码时,不使用A/D转换的整个动态范围,只给亮度信号分配220个量化级,黑电平对应于量化级16,白电平对应于量化级235。为每个色信号分配224个量化级,色信号的零电平对应于量化级128。

综上所述,我们知道,分量信号的编码数据流是很高的。以4:2:2编码标准为例,其比特流为:13.5×8+6.75×8×2=216Mb/S。若采用4:4:4编码方式,即对复合信号直接编码,其抽样频率取为13.3×8=106.4 Mb/S。

关于这两种信号的区别:

IT BT 601(CCIR601旧称):16位数据传输;21芯;Y、U、V信号同时传输;要通过行、场同步两根信号线来传递行、场同步信息;

IT BT 656(CCIR656旧称):9芯,不需要同步信号;8位数据传输;串行视频传输;传输速率是601的2倍;先传Y,后传UV。不需要这两根信号线,它只通过8位数据线实现“软”同步

CCIR601=CCIR656+HSYNC+VSYNC

ITU BT.656输入接口有一根pixel_CLK时钟信号,8根YUV的数据信号,还有二根SVVS/SVHS(垂直水平同步信号);

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。