3845双管正激电路图_3845双管正激开关电源电路图

游戏社区 2025-01-24 00:16:47

开关电源电路图 开关电源工作原理

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。下面我们来看看开关电源电路图以及开关电源工作原理吧。

3845双管正激电路图_3845双管正激开关电源电路图3845双管正激电路图_3845双管正激开关电源电路图


3845双管正激电路图_3845双管正激开关电源电路图


一、开关式稳压电源的基本工作原理

开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算,

即Uo=Um×T1/T

式中Um为矩形脉冲电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路图

1、基本电路

图二 开关电源电路图

开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2.单端反激式开关电源电路图

单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。的缺点是输出的纹波电压较大,外特性,适用于相对固定的负载。

单端反激式开关电源使用的开关管VT1 承受的反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。

3.单端正激式开关电源电路图

单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也

导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和

复位时间应相等,所以电路中脉冲的占空比不能大于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。

4.自激式开关稳压电源电路图

自激式开关稳压电源的典型电路如图五所示。这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。

当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。

自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。

5.推挽式开关电源电路图

推挽式开关电源的典型电路如图六所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500 W范围内。

6.降压式开关电源电路图

降压式开关电源的典型电路如图七所示。当开关管VT1 导通时,二极管VD1 截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。

这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。

7.升压式开关电源电路图

升压式开关电源的稳压电路如图八所示。当开关管 VT1 导通时,电感L储存能量。当开关管VT1 截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。

8.反转式开关电源电路图

反转式开关电源的典型电路如图九所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。

当开关管 VT1 导通时,电感L 储存能量,二极管VD1 截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。

以上就是小编为大家介绍的开关电源电路图以及开关电源工作原理的内容,希望能够帮助到您。更多关于开关电源电路图的相关资讯,请继续关注土巴兔学装修。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【

谁能解释下开关电源的正激反激啊

正激反激的不同在于他们功率开关管的导通关闭能量传输不同,反激式只是开关管导通时能量在原边,副边截至,而开关管关断是能量传输到副边,正激式相反

正激反激主要区别在高频变压器的工作方式不同但他们在同一象限上!

正激是当变压器原边开关管导通时同时能量被传递到负载上,当开关管截止是变压器的能量要通过磁复位电路去磁

反激是和正激相反 当原边开关管导通时给变压器存储能量 但能量不会加在负载上 当开关管截止时 变压器的能量释放到负载侧,

跟激励线圈的方向有关,正激指的是线圈的同名端接开关管的激励端,而反激则相反。

偶也不确定。

你知道家里的电源插头正反吗?不知就随便插,反正你高不清的啊

关于基本正激电路问题

S关断后W1和W2的电流都突然变为0,但铁芯中的磁场不可能突变,故W3突然产生电流使其磁场和此前连续。因W3的绕线方向与W2相反,所以W3的电流是倒灌流回电源的。

因电源电压加在W3两端使得W3的电流按照一定变化率下降,因而磁场也按照一定变化率减小,此变化的磁通量在W3感生的电动势与电源抗衡(若忽略线圈电阻及二极管正向压降则二者相等)。此感生电动势与电源抗衡形成的电压是上正下负。

但此磁场同时也通过W2、W1,必然也在它们中感生电动势,而且W3的绕线方向与W2、W1相反,所以W2、W1两端电压变为下正上负。

(注意:图中画的不清楚,实际三个线圈应该是绕在同一个铁芯上的。)

从上面分析可以看到W3的作用,就是为了使磁场能连续而留出的电流通路。采用这种形式,开关断开期间,磁场的磁能可以化为电能送回电源。

如没有W3,那么S关断瞬间要使磁场保持连续,唯有两个电流通路:一是开关击穿,二是W2电流倒流使二极管反向击穿。而击穿开关或反向击穿二极管,均须很高电压,迫使电流以较高的变化率下降到零为止。而很高的电流变化率(相应磁通量也有很高的变化率)自然会产生很高的感生电动势以形成这个击穿电压。

可见,如没有W3,那么不仅磁能无法变成电能回收到电源(这是比较次要的),而且对开关或二极管的击穿都容易使电路破坏(这更重要)。

以上是回答原题中的主要疑问点。

另外,这种电路设计的要求中,还有一个与W3有关的“磁复位”的问题,虽然原问题里没有直接问到,但因其重要性,也应该说一下为好。

所谓“磁复位”就是说:S关断时间的长度,应保证倒灌流回电源的W3的电流可以一直减小到零(磁场也减小到零)。此后,电源电压就完全降在了二极管上,故电流就维持零直到下次开关导通前。于是下一个周期电流、磁场可以重新从零开始。为此,每周期中关断时间和导通时间之比,不得小于一个界限(与圈数比N3/N1有关)。

这是本电路设计的一个必要满足的条件。如不满足,电路不能正常工作。理由简述如下:

我们知道,每周期中S导通期间磁场连续增加,关断的瞬时磁通量达到,然后磁场连续减小。线圈上的感生电动势和磁通量变化率正比,而该电动势都是与电源抗衡的,若忽略电阻则感生电动势等于电源电压。所以S导通期间磁通量的增加速率,以及S关断期间磁通量的减小速率,主要都由电源电压决定。

因此,若忽略电阻,S导通和关断时间长度确定后,磁通量前一段的增加量和后一段的减小量也就分别确定了。

显然,满足上述“磁复位”的必要条件,则此增加量和减小量总是相等,每个周期总是从零开始。

如S关断时间过短,不能保证电流达零实现“磁复位”,结束时剩下一个磁通量Δφ,也就是说后一段的减小量小于前一段的增加量。于是,因磁场的连续,下一个周期S导通以后的起始磁通量(由起始电生)也必定从Δφ开始,而不是从零开始了。以此类推,以后各周期磁通量均比上周期抬高Δφ,起始磁通量依次为2Δφ、3Δφ、4Δφ、……,就会无限增加(也就是说电流无限增加)。

当然,实际上因电阻的不可忽略,并不会真的“无限”,但通常总会达到磁场饱和的程度,形成相当于短路的致命效果。

这就是保证“磁复位”的重要性所在。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。