平面直角坐标系的13个知识点_平面直角坐标系的六个知识点

游戏安利 2024-11-10 09:50:16

解直角三角形知识点总结

解直角三角形知识点总结

平面直角坐标系的13个知识点_平面直角坐标系的六个知识点平面直角坐标系的13个知识点_平面直角坐标系的六个知识点


平面直角坐标系的13个知识点_平面直角坐标系的六个知识点


平面直角坐标系的13个知识点_平面直角坐标系的六个知识点


解直角三角形是中考数学的一大考点,但相关的知识点其实并不是十分的难,下面解直角三角形知识点总结是我为大家带来的,希望对大家有所帮助。

解直角三角形知识点总结 【知识梳理】

1.解直角三角形的依据(1)角的关系:两个锐角互余;(2)边的关系:勾股定理;(3)边角关系:锐角三角函数

2.解直角三角形的基本类型及解法:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.

3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决

【课前预习】

1、在Rt△ABC中,∠C=90°,根据已知量,填出下列表中的未知量:

a b c ∠A ∠B

6 30°

10 45°

2、所示,在△ABC中,∠A=30°, ,AC= ,则AB= .

变式:若已知AB,如何求AC?

3、在离大楼15m的地面平角:等于180的角叫做平角。上看大楼顶部仰角65°,则大楼高约 m.

(到1m, )

4、路基横断面为一个等腰梯形,若腰的坡度为1: ,顶宽为3米,路基高为4米,

则坡角= °,腰AD= ,路基的下底CD= .

5、王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 m.

【解题指导】

例1 在Rt△ ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB.

(1)求tanB;(2)若DE=1,求CE的长.

例2 34-4所示,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼.当冬季正午的阳光与水平线的夹角为32°时.

(1)问超市以上的居民住房采光是否有影响,为什么?

(2)若新楼的影子刚好部落在居民楼上,则两楼应相距多少米?

(结果保留整数,参考数据: )

例3某校初三课外活动小组,在测量树高的一次活动中,34-6所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1m的影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比 ,求树高AB.(结果保留整数,参考数据 )

例4 一副直角三角板放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.

【巩固练习】

1、某坡面的坡度为1: ,则坡角是_______度.

2、已知一斜坡的坡度为1:4,水平距离为20m,则该斜坡的垂直高度为 .

3、河堤的横断面1所示,堤高BC是5m,迎水斜坡AB长13m,那么斜坡AB的坡度等于 .

4、菱形 在平面直角坐标系中的位置2所示, ,则点 的坐标为 .

5、先锋村准备在坡角为 的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为 .

6、一巡逻艇航行至海面 处时,得知其正北方向上 处一渔船发生故障.已知港口 处在 处的北偏西 方向上,距 处20海里; 处在A处的北偏东 方向上,求 之间的距离(结果到0.1海里)

【课后作业】

一、必做题:

1、4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为 cm.

2、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为 米,则这个坡面的坡度为__________.

3、已知5,在△ABC中,∠A=30°,tanB= ,BC= ,则AB的长为__ ___.

4、6,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△ ,使点 与C重合,连结 ,则 的值为 .

5、7所示,在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测初一数学下册课本知识点相关 文章 :得A地在C地南偏西30°方向,则A、C两地的距离为( )

(A) (B) (C) (D)

6、8,小明要测量河内岛B到河边公路l的`距离,在A测得 ,在C测得 , 米,则岛B到公路l的距离为( )米.

(A)25 (B) (C) (D)

7、9所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西10°的方向行驶40海里到达C地,则A、C两地相距().

(A)30海里 (B)40海里 (C)50海里 (D)60海里

8、是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为( )

(A) (B) (C) (D)

9、11,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°方向上.

(1)求出A,B两村之间的距离;

(2)为方便村民出行,在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法).

10、是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD = 24 m,OE⊥CD于点E.已测得sin∠DOE = .(1)求半径OD;(2)根据需要,水面要以每小时0.5 m的速度下降,则经过多长时间才能将水排干?

11、所示,A、B两城市相距100km. 现在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上. 已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内. 请问:修筑的这条高速公路会不会穿越保护区?为什么?(参考数据: , )

12、,斜坡AC的坡度(坡比)为1: ,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.

二、选做题:

13、,某货船以每小时20海里的速度将一批重要物资由A处运往正西方向的B处,经过16小时的航行到达.此时,接到气象部门的通知,一台风中心正以40海里每小时的速度由A向北偏西60o方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.⑴ B处是否会受到台风的影响?请说明理由.⑵ 为避免受到台风的影响,该船应在到达后多少小时内卸完货物?

14、所示,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.

(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;

(2)若CE=2,BD=BC,求∠BPD的正切值;

(3)若tan∠BPD= ,设CE=x,△ABC的周长为y,求y关于x的函数关系式.

;

初中数学初一初二知识点

运算顺序以及有理数的混合运算,灵活运用运算律简化运算。

初一:

19.(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);

①有理数

②整式的加减

③一元一次方程

④图形认识初步

⑥平面直角坐标系

⑦三角形

⑧二元一次方程组

⑨不等式与不等式组

10.书卷的收集.整理与描述

初二:

11.全等三角形

12.轴对称

13.实数

14.一次函数

15.整式的乘除与因式的分解

16.分式

17.反比例函数

18.勾股定理

19.四边形

证明:在坐标平面任意给定13个整点,则必有一个以它们中的三个点为顶点的三角形,其重心也是整点

因此一元二次方程中的 ,在二次函数中表示图像与x轴是否有交点。

当取Pi, Pj, Pk 3点构成三角形时,其重心坐标为 ((xi+xj+xk)/3, (yi+yj+yk)/3).

除3的同余类只有3个。于是Pi中必有5个点的x坐标在同一个除3的同余类中,而这5个点的任意3个点的 x坐标平均值必是整数。下面在这5点中,考虑y坐标,只有以下两种情形:

1. 在三个同余类都存在, 即存在Pi, Pj, Pk 使得: 3|yi , 3|(yj-1), 3|(yk-2),

取这三点构成三角形,其重心必为整数。

2. 在某个同余类至少有三个点的y坐标。 则取此三点构成三角形,其重心必为整数。

毕~62、一次函数的平移问题

这是求中心的方法,如果物体形状特殊,质量均匀,中心和重心重合

初中函数知识点

全章测试

以下是一些知识点供你参考,如果想要一些题得话,你可以在百度文库里面搜索初中函数知识点,里面有不少呢~!

祝学习进步~!

函数及其图像

一、平面直角坐标系

坐标平面被x轴和y轴分割而成的四个部分,分别叫做象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

象限(+,+) 第二象限(-,+) 第三象限(-,-) 第四象限(+,-)

2、坐标轴上的点的特征

在x轴上纵坐标为0 , 在y轴上横坐标为, 原点坐标为(0,0)

3、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在、三象限夹角平分线上 x与y相等

点P(x,y)在第二、四象限夹角平分线上 x与y互为相反数

4、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征

点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数

点P与点p’关于y轴36,有一个角等于60°的等腰三角形是等边三角形对称 纵坐标相等,横坐标互为相反数

点P与点p’关于原点对称 横、纵坐标均互为相反数

6、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)到x轴的距离等于 (2)到y轴的距离等于 (3)到原点的距离等于

三、函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数的三种表示法(1)解析法(2)列表法(3)图像法

3、由函数解析式画其图像的一般步骤(1)列表(2)描点(3)连线

4、自变量取值范围

四、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,如果 (k,b是常数,k 0),那么y叫做x的一次函数。

特别地,当一次函数 中的b为0时, (k为常数,k 0)。这时,y叫做x的正比例函数。

2、一次函数的图像:是一条直线

3、正比例函数的性质,,一般地,正比例函数 有下列性质:

(1)当k>0时,图像经过、三象限,y随x的增大而增大;

(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。

4、一次函数的性质,,一般地,一次函数 有下列性质:

(1)当k>0时,y随x的增大而增大

(2)当k<0时,y随x的增大而减小

5、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式 (k 0)中的常数k。确定一个一次函数,需要确定一次函数定义式 (k 0)中的常数k和b。解这类问题的一般方法是待定系数法。

6、 设两条直线分别为, : :

若 且 。 若

7、平移:上加下减,左加右减。

8、较点坐标求法:联立方程组

五、反比例函数

1、反比例函数的概念

一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 或xy=k的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像是双曲线。

3、反比例函数的性质

(1)当k>0时,函数图像的两个分支分别在、三象限。在每个象限内,y随x 的增大而减小。

(2)当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。

(3) 图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

(4)图像既是轴对称图形又是中心对称图形

(5)图像上任意一点向坐标轴作垂线,与坐标轴所围成矩形面积等于|k|

4、反比例函数解析式的确定

只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

六、二次函数

1、二次函数的概念:一般地,如果 ,那么y叫做x 的二次函数。

2、二次函数的图像是一条抛物线。

3、二次函数的性质:

(1)a>0抛物线开口向上,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而减小;在对称轴的右侧,即当x> 时,y随x的增大而增大;抛物线有点,当x= 时,y有最小值,

(2) a<0抛物线开口向下,对称轴是x= ,顶点坐标是( , );在对称轴的左侧,即当x< 时,y随x的增大而增大;在对称轴的右侧,即当x> 时,y随x的增大而减小,;

抛物线有点,当x= 时,y有值,

4、.二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)两根式:

5、抛物线 中, 的作用:

表示开口方向: >0时,抛物线开口向上,,, <0时,抛物线开口向下

与对称轴有关:对称轴为x= ,a与b左同右异

表示抛物线与y轴的交点坐标:(0, )

6、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

当 >0时,图像与x轴有两个交点;

当 =0时,图像与x轴有一个交点;

当 <0时,图像与x轴没有交点。

7、求抛物线的顶点、对称轴的方法

(1)公式法:顶点是 ,对称轴是直线 .

(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .

8、平移: 可以由 平移得到。上加下减,左加右减。

点的坐标知识点是什么?

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分

1、确定

平面

上的点的位置的方法很多,通常需要两个量来确定一个点的位置,这两个量可以都是数,也可以是一个

角度

、一个数。2、

确定位置

的方法主要有两种:(1)由距离和方位角确定;(2)建立

平面直角坐标系

由一对

有序实数

对确定。3、在平面上确定

物体

的位置,一般方式:用两个数据a 和b 记(a ,b),a表示: 排、行、

经度

、角度、距离……b表示: 号、列、

纬度

、距离、 角度……4、“方位角加距离”定位法(也叫极坐标定位法)5、方格纸定位法(横向格数,纵向格数)6、区域定位法是

生活中

常用的在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。方法

高二数学必修三极坐标系知识点

(l)理解二次函数和抛物线的有关概念,会用描点法画出二

极坐标系是高二数学必修三中的一大教学难点,有哪些知识点需要我们学习的呢?下面是我给大家带来的高二数学必修三极坐标系知识点,希望对你有帮助。

高二数学必修三极坐标系知识点

极坐五、知识点、概念总结标系的定义:

在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样就建立了一个极坐标系。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。

点的极坐标:

设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标,如图,

极坐标系的四要素:

极点,极轴,长度单位,角度单位和它的正方向.极坐标系的四要素,缺一不可.

极坐标系的特别注意:

①关于θ和ρ的正负:极角θ的始边是极轴,取逆时针方向为正,顺时针方向为负,θ的值一般以弧度为单位。

极坐标和直角坐标的互化:

(1)互化的前提条件

①极坐标系中的极点与直角坐标系中的原点重合;

②极轴与x轴的正半轴重合;

③两种坐标系中取相同的长度单位.

(2)互化公式

特别提醒:①直角坐标化为极坐标用第二组公式.通常取

所在的象限取最小正角; ②当

③直角坐标方程及极坐标方程互化时,要切实注意互化前后方程的等价性.

④若极点与坐标原点不是同一个点.如图,设M点在以O为原点的直角坐标系中的坐标为(x,y),在以

为原点也是极点的时候的直角坐标为(x′,y′),极坐标为(ρ,θ),则有

组公式用于极坐标化直角坐标;第二组公式用于直角坐标化极坐标.

高二数学必修三平面直角坐标系知识点

数轴(直线坐标系):

在直线上取定一点O,取定一个方向,再取一个长度单位,点O,长度单位和选定的方向三者就构成了直线上的坐标系,简称数轴.如图,

平面直角坐标系:

在平面上取两条互相垂直并选定了方向的直线,一条称为x轴,一条称为y轴,交点O为原点。再取一个单位长度,如此取定的两条互相垂直的且有方向的直线和长度单位构成平面上的一个直角坐标系,即为xOy。

如图:

平面上的伸缩变换:

设点P(x,y)是平面直角坐标系中任意一点,在变换

对应到

为平面直角坐标系中的伸缩变换。

建立坐标系必须满足的条件:

任意一点都有确定的坐标与它对应;反之,依据一个点的坐标就能确定这个点的位置.

坐标系的作用:

①坐标系是刻画点的位置与其变化的参照物;

②可找到动点的轨迹方程,确定动点运动的轨迹(或范围);

③可通过数形结合,用代数的方法解决几何问题。

高二数学必修三极坐标方程知识点

曲线的极坐标方程的定义:

一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程。

求曲线的极坐标方程的常用方法:

直译法、待定系数法、相关点法等。

圆心为(α,β)(a>0),半径为a的圆的极坐标方程为

此圆过极点O。

直线的极坐标方程:

直线的极坐标方程是ρ=1/(2cosθ+4sinθ)。

圆的极坐标方程:

这是圆在极坐标系下的一般方程。

初一数学几何基础知识点总结归纳

36、一元二次方程的定义

一、目标与要求

1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手作能力,经历问题解决的过程,提高解决问题的能力。

3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

二、知识框架

三、重点

从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;

正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;

画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点。

四、难点

立体图形与平面图形之间的转化是难点;

探索点、线、面、体运动变化后形成的图形是难点;

画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。

1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

12.角的符号:角的`符号:

13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0,小于90的角叫做锐角。

直角:等于90的角叫做直角。

钝角:大于90而小于180的角叫做钝角。

优角:大于180小于360叫优角。

劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。

对顶数轴:角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

14.几何图形分类

(1)立体几何图形可以分为以下几类:

类:柱体;

包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;

棱柱体积统一等于底面面积乘以高,即V=SH,

第二类:锥体;

包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;

棱锥体积统一为V=SH/3,

第三类:球体;

此分类只包含球一种几何体,

体积公式V=4R3/3,

其他不常用分类:圆台、棱台、球冠等很少接触到。

大多几何体都由这些几何体组成。

(2)平面几何图形如何分类

a.圆形

b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

注:正方形既是矩形也是菱形

初中数学知识点总结

那么”’…”的形式。

初中数学用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );知识点总结

一、基本知识

一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

:①在数轴上,一个数所对应的点与原点的距离叫做该数的。②正数的是他的本身、负数的是他的相反数、0的是0。两个负数比较大小,大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把相加。②异号相加,相等时和为0;不等时,取较大的数的符号,并用较大的减去较小的。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,的意义和有理数范围内的相反数,倒数,的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:

先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,配成完全平方公式

(2)分解因式法的步骤:

把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

(3)公式法

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

I当△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,AC>BC(C>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,AC

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

二空间与图形

A、图形的认识

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

二、基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理 三角形两边的和大于第三边

16、推论 三角形两边的小于第三边

17、三角形内角和定理 三角形三个内角的和等于180°

18、推论1 直角三角形的两个锐角互余

19、推论2 三角形的一个外角等于和它不相邻的两个内角的和

20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等

24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS) 有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的

30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1 三个角都相等的三角形是等边三角形

36、推论 2 有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的

42、定理1 关于某条直线对称的两个图形是全等形

43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48、定理 四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°

52、平行四边形性质定理1 平行四边形的对角相等

53、平行四边形性质定理2 平行四边形的对边相等

54、推论 夹在两条平行线间的平行线段相等

55、平行四边形性质定理3 平行四边形的对角线互相平分

56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形

58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60、矩形性质定理1 矩形的四个角都是直角

61、矩形性质定理2 矩形的对角线相等

62、矩形判定定理1 有三个角是直角的四边形是矩形

63、矩形判定定理2 对角线相等的平行四边形是矩形

64、菱形性质定理1 菱形的四条边都相等

65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1 四边都相等的四边形是菱形

68、菱形判定定理2 对角线互相垂直的平行四边形是菱形

69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71、定理1 关于中心对称的两个图形是全等的

72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3 三边对应成比例,两三角形相似(SSS)

95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2 相似三角形周长的比等于相似比

98、性质定理3 相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的

102、圆的内部可以看作是圆心的距离小于半径的点的

103、圆的外部可以看作是圆心的距离大于半径的点的

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理 不在同一直线上的三点确定一个圆。

110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

中考数学最全考点分析主要知识点

备考中考数学的时候不免会遇到各种问题,甚至迷失方向,但是请不要害怕,只要努力坚持下去,终有一天我们会到达成功的彼岸。为了减轻各位同学的负担,我给大家整理了中考数学最全考点分析主要知识点,方便大家学习。

↓↓↓点击获取更多"中考知识点 " ↓↓↓

★ 中考物理重点复习资料 ★

★ 中考语文必背文言文汇总 ★

★ 中考化学的实验题知识 ★

★ 中考英语重难点语法详解 ★

中考数学最全考点分析主要知识点

一、相似三角形(7个考点)

考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.

考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.

注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.

考点3:相似三角形的概念

考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.

考点4:相似三角形的判定和性质80,经过三角形一边的中点与另一边平行的直线,必平分第三边及其应用

考核要求:熟练掌握相似三角形的判定定理(包括预备的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.

考点5:三角形的重心

考核要求:知道重心的定义并初步应用.

考点6:向量的有关概念

考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

考核要求:掌握实数与向量相乘、向量的线性运算

二、锐角三角比(2个考点)

考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.

考点9:解直角三角形及其应用

考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.

三、二次函数(4个考点)

考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示 方法 ,知道符号的意义.

考点11:用待定系数法求二次函数的解析式

考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.

注意求函数解析式的步骤:一设、二代、三列、四还原.

考点12:画二次函数的图像

考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.

考点13:二次函数的图像及其基本性质

考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.

注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.

四、圆的相关概念(6个考点)

考点14:圆心角、弦、弦心距的概念

考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.

考点15:圆心角、弧、弦、弦心距之间的关系

考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.

考点16:垂径定理及其推论

垂径定理及其推论是圆这一板块中最重要的知识点之一.

考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

直线与圆的位置关系可从 与 之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.

考点18:正多边形的有关概念和基本性质

考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.

考点19:画正三、四、六边形.

考核要求:能用基本作图工具,正确作出正三、四、六边形.

五、数据整理和概率统计(9个考点)

考点20:确定和随机

考核要求:(1)理解必然、不可能、随机的概念,知道确定与必然、不可能的关系;(2)能区分简单生活中的必然、不可能、随机.

考点21:发生的可能性大小,的概率

考核要求:(1)知道各种发生的可能性大小不同,能判断一些随机发生的可能的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然、不可能的概率和随机概率的取值范围;(3)理解随机发生的频率之间的区别和联系,会根据大数次试验所得频率估计的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述发生的可能性的大小;(2)的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更.

考点22:等可能试验中的概率问题及概率计算

本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中概率计算公式来计算简单的概率;(2)会用枚举法或画“树形图”方法求等可能的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.

在求解概率问题中要注意:(1)计算前要先确定是否为可能;(2)用枚举法或画“树形图”方法求等可能的概率过程中要将所有等可能情况考虑完整.

考点23:数据整理与统计图表

本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.

考点24:统计的含义

本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.

考点25:平均数、加权平均数的概念和计算

本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.

考点26:中位数、众数、方、标准的概念和计算

考核要求:(1)知道中位数、众数、方、标准的概念;(2)会求一组数据的中位数、众数、方、标准,并能用于解决简单的统计问题.

注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.

考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在别:在同一个问题中,频数反映的是对象出现频繁程度的数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.

考点28:中位数、众数、方、标准、频数、频率的应用

本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方、标准、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.

中考数学最全考点分析主要知识点相关 文章 :

★ 中考数学复习重要知识点大全

★ 中考数学知识点总结最全提纲

★ 中考数学重要考点内容

★ 中考数学知识点复习提纲

★ 初中数学考点大全

★ 中考数学复习39个知识点

★ 实数中考数学实数必备知识点

★ 中考数学提纲知识点 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

关于平面直角坐标系的七年级难题 给我出题

116,一条弧所对的圆周角等于它所对的圆心角的一半

第六章 平面直角坐标系

测试1 平面直角坐标系

学习要求

认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.

(一)课堂学习检测

1.填空

(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.

(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.

(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.

(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0”分别填写)

点的位置 点的横坐标符号 点的纵坐标符号

在象限

在第二象限

在第三象限

在第四象限

在x轴的正半轴上

在x轴的负半轴上

在y轴的负半轴上

在原点

2.如图,写出图中各点的坐标.

A( , );B( , );C( , );

D( , );E( , );F( , );

G( , );H( , );L( , );

M( , );N( , );O( , );

3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.

(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).

(2)A(-5,-2)、B(-4,-1)、C(-3,0)、 D(-2,1)、E(-1,2)、 F(0,3)、G(1,2)、H(2,1)、L(3,0)、M(4,-1)、N(5,-2).

4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.

(1)A(1,4)、 B(2,2)、

C(1, )、 D(4,1)、

E(6, )、 F(-1,-4)、

G(-2,-2)、 H(-3,- )、

L(-4,-1)、 M(-6,- )

(2)A(0,-4)、 B(1,-3)、

C(-1,-3)、 D(2,0)、

E(-2,0)、 F(2.5,2.25)、

G(-2.5,2.25)、 H(3,5)、

L(-3,5).

5.下列各点A(-6,-3),B(5,2),C(-4,3.5), ,E(0,-9),F(3,0)中,属于象限的有______;属于第三象限的有______;在坐标轴上的有______.

6.设P(x,y)是坐标平面上的任一点,根据下列条件填空:

(1)若xy>0,则点P在______象限;

(2)若xy<0,则点P在______象限;

(3)若y>0,则点P在______象限或在______上;

(4)若x<0,则点P在______象限或在______上;

(5)若y=0,则点P在______上;

(6)若x=0,则点P在______上.

7.已知正方形ABCD的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.

(二)综合运用诊断

8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.

(1)在图1中,过A(-2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.

图1

(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.

直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.

(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.

图2

9.选择题

(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).

A.(1,0) B.(2,0) C.(0,2) D.(0,1)

(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).

A.(3,-4) B.(-4,3) C.(4,-3) D.(-3,4)

(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).

A.象限 B.第二象限 C.第三象限 D.第四象限

(4)如果点E(-a,-a)在象限,那么点F(-a2,-2a)在( ).

A.第四象限 B.第三象限 C.第二象限 D.象限

(5)给出下列四个命题,其中真命题的个数为( ).

①坐标平面内的点可以用有序数对来表示;

②若a>0,b不大于0,则P(-a,b)在第三象限内;

③在x轴上的点,其纵坐标都为0;

④当m≠0时,点P(m2,-m)在第四象限内.

A.1 B.2 C.3 D.4

10.点P(-m,m-1)在第三象限,则m的取值范围是______.

11.若点P(m,n)去购买一部复习的书,这样可以看见内部结构,列的也很详细,内容太多,不便都打出,还请见谅在第二象限,则点Q(|m|,-n)在第______象限.

12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.

13.A(-3,4)和点B(3,-4)关于______对称.

14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.

(三)拓广、探究、思考

15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.

16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D的坐标.

17.求三角形ABC的面积.

(1)已知:A(-4,-5)、B(-2,0)、C(4,0).

(2)已知:A(-5,4)、B(-2,-2)、C(0,2).

18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.

(1)A、B关于x轴对称;

(2)A、B关于y轴对称;

(3)A、B关于原点对称.

19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.

(1)点P在y轴上;

(2)点P在x轴上;

(3)点P的纵坐标比横坐标大3.

(4)点P在过A(2,-3)点,且与x轴平行的直线上.

20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.

学习要求

能建立适当的平面直角坐标系描述物体的位置.

在同一直角坐标系中,感受图形变换后点的坐标的变化.

(一)课堂学习检测

1.回答下面的问题.

(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示,点G表示.

请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)

(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是

①建立______选择一个____________为原点,确定x轴、y轴的____________;

②根据具体问题确定适当的______在坐标轴上标出____________;

③在坐标平面内画出这些点,写出各点的______和各个地点的______.

2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:

3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).

①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;

②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;

③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.

(二)综合运用诊断

一、填空

4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.

5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.

6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.

7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.

8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.

9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).

10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________

_______________________________________________________________________.

二、选择题

11.下列说法不正确的是( ).

A.坐标平面内的点与有序数对是一一对应的

B.在x轴上的点纵坐标为零

C.在y轴上的点横坐标为零

D.平面直角坐标系把平面上的点分为四部分

12.下列说法不正确的是( ).

A.把一个图形平移到一个确定位置,大小形状都不变

B.在平移图形的过程中,图形上的各点坐标发生同样的变化

C.在平移过程中图形上的个别点的坐标不变

D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线

13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是( ).

A.(3,-2) B.(-3,-2) C.(0,0) D.(0,-3)

14.已知三角形内一点P(-3,2),如果将该三角形向右平移2个单位长度,再向下平移1个单位长度,那么点P的对应点P′的坐标是( ).

A.(-1,1) B.(-5,3) C.(-5,1) D.(-1,3)

15.将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是( ).

A.向上平移了1个单位长度,向左平移了1个单位长度

B.向下平移了1个单位长度,向左平移了1个单位长度

C.向下平移了1个单位长度,向右平移了1个单位长度

D.向上平移了1个单位长度,向右平移了1个单位长度

16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.

左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.

17.(1)如果动点P(x,y)的坐标坐标满足关系式试 ,在表格中求出相对应的值,并在平面直角坐标系里描出这些点:

点的名称 A B C D E

点的横坐标x -2 2

点的纵坐标y -1 1 3

(2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A1、B1、C1、D1、E1,试画出这几个点,并分别写出它们的坐标.

(三)拓广、探究、思考

18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:

1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;

2)填空:平行四边形ABCD的面积等于______.

19.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.

一、填空题:

1.若点P(a,b)在第四象限,则

(1)点P1(a,-b)在第______象限;

(2)点P2(-a,b)在第______象限;

(3)点P3(-a,-b)在第______象限.

2.在x轴上,若点P与点Q(-2,0)的距离是5,则点P的坐标是______.

3.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是______.

4.(1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.

(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.

5.已知:如图:试写出坐标平面内各点的坐标.

A(______,______);B(______,______);

C(______,______);D(______,______);

E(______,______);F(______,______).

6.若点P(m-3,m+1)在第二象限,则m的取值范围是______.

7.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.

8.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.

9.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.

10.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______.

二、选择题:

11.若点P(a,b)的坐标满足关系式ab>0,则点P在( ).

(A)象限 (B)第三象限

(C)、三象限 (D)第二、四象限

12.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).

(A)原点 (B)x轴上

(C)y轴上 (D)x轴上或y轴上

13.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).

(A)(1,2) (B)(2,1)

(C)(1,2),(1,-2),(-1,2),(-1,-2)

(D)(2,1),(2,-1),(-2,1),(-2,-1)

14.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).

(A)象限 (B)第二象限

(C)第三象限 (D)第四象限

15.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于

(3,-2),则“炮”位于点( ).

(A)(1,3)

(B)(-2,1)

(C)(-1,2)

(D)(-2,2)

16.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.

(A)(0,3),(0,1),(-1,-1) (B)(-3,2),(3,2),(-4,0)

(C)(1,-2),(3,2),(-1,-3) (D)(-1,3),(3,5),(-2,1)

三、解答题:

17.一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.

18.如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求作:

(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);

(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是______,△ABC的面积是______.

19.已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.

20.已知:A(0,1),B(2,0),C(4,3)

(1)求△ABC的面积;

(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

第六章 平面直角坐标系

测试1

1.(1)垂直、重合、数轴,x轴、横轴,向右方向;y轴、纵轴,向上方向;原点、平面

(2)有序数对.A点的坐标,横坐标,纵坐标.

(3)两条坐标轴,象限、第二象限、第三象限、第四象限、坐标轴上的点.

(4)略

2.A(2,5);B(-4,6);C(-7,2);D(-6,0);

E(-5,-3);F(-4,-5);G(0,-6);H(2,-5);

L(5,-2);M(5,0);N(6,3);O(0,0).

3.

(1) (2)

4.(1) (2)

5.B、D;A; E和F

6.(1)一或三 (2)二或四

(3)一或二象限或y轴正半轴上.

(4)二或三象限或x轴的负半轴上.

(5)x轴上.(6)y轴上.

7.(1)A(4,0),B(4,4),C(0,4),D(0,0)

(2)A(2,-2),B(2,2),C(-2,2),D(-2,-2)

(3)A(2,-4),B(2,0),C(-2,0),D(-2,-4)

(4)A(0,-4),B(0,0),C(-4,0),D(-4,-4)

8.(1)任意实数,3;垂直,(0,3),平行,3.

(2)-2,任意实数;垂直,(-2,0),平行,2.

(3)相等,平分.

9.(1)A;(2)D;(3)C;(4)C;(5)B.

10.0<m<1. 11.第四象限. 12.(-6,2),(-6,-2). 13.原点.

14.m=-2,n=3. 15.(-4,-6).

16.以点B为原点,射线BC、射线BA分别为x轴、y轴正半轴建立直角坐标系.

A(0,3),B(0,0),C(6,0),D(6,3).

17.(1)提示:作AD⊥x轴于D点,S△ABC=15.

(2)提示:作AD⊥y轴于D点,

作BE⊥y轴于E点,

S△ABC=S梯形ABED-S△ACD-S△BCE

=12.

18.(1)a=3,b=4;(2)a=-3,b=-4;(3)a=-3,b=4.

(2)令m-1=0,解得m=1,所以P点的坐标为(6,0);

(4)令m-1=-3,解得m=-2.所以P点的坐标为(0,-3).

20.(1)当x=-1时,点P在x轴的负半轴上;

(2)当x=1时,点P在y轴的正半轴上;

(3)当x>1时,点P在象限;

(4)当-1<x<1时,点P在第二象限;

(5)当x<-1时,点P在第三象限;

(6)点P不可能在第四象限.

测试2

1.(1)A(-150,50),B(150,200),C(-,300),

D(450,-400),E(500,-100),F(350,400),

G(-100,-300),H(300,-),L(-150,-500).

(2)略.

2.略.

3.(2)画图如图所示:

①C1(4,4); ②C2(-4,-4); ③D(0,-1).

4.x轴,y轴. 5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).

6.右,左,a个单位长度,上,下,b个单位长度.

7.(-2,5),(-4,3). 8.(1,2). 9.2,4.

10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.

11.D 12.C 13.C 14.A 15.B 16.(5,4).

17.(1)

点的名称 A B C D E

点的横坐标y -1 0 1 2 3

图略.

(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.

18.(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.

(第18题答图)

19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.

(注:图中的单位1表示50km)

(第19题答图)

1.(1)一;(2)三;(3)二. 2.(-7,0)或(3,0).

3.(0,-3)或(0,9). 4.(1)4,5;(2)2|n|,3|m|.

5.A(-5,0),B(0,-3),C(5,-2),D(3,2),E(0,2),F(-3,3).

6.-1<m<3. 7.(-3,2).

8.B’(-3,-6),(-4,-1). 9.y轴. 10.(2,-1).

11.C; 12.D; 13.D; 14.A; 15.B; 16.D.

17.在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C

18.(1)略;(2)(-2,2)或(-1,1);2或4

19.如图所示,可以画出三个平行四边形,即平行四边形ABD1C,平行四边形AD2BC,平行四边形ABCD3,其中D1(8,3),D2(0,-5),D3(-4,3).

20.(1)S△ABC=4;

(2)P1(-6,0)、P2(10,0)、P3(0,5)、P4(0,-3).

苏科版数学七年级下册知识点

第五章相交线与平行线

一、知识网络(3)令m-1=(2m+4)+3,解得m=-8,所以P点的坐标为(-12,-9);结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章实数

【知识点一】实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

【知识点二】实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2. |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

【知识点三】实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

【知识点四】实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,较大的那个正数大;两个负数;大的反而小.

3.无理数的比较大小:

【知识点五】实数的运算

1.加法

同号两数相加,取相同的符号,并把相加;不相等的异号两数相加,取较大的加数的符号,并用较大的减去较小的;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以方,负数不能方;正数、负数和0都可以开立方.

(3)零指数与负指数

【知识点六】有效数字和科学记数法

1.有效数字:

一个近似数,从左边个不是0的数字起,到到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标 0;②x轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3) 到x轴的距离是 ; 到y轴的距离是 ; 点P(2,3) 关于x轴对称的点坐标为( , );点P(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b) 在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为( , );将点P(2,3)向右平移2个单位后得到的点的坐标为( , );将点P(2,3)向上平移2个单位后得到的点的坐标为( , );将点P(2,3)向下平移2个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

第八章二元一次方程组

一、知识网络结构

二、知识要点

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

第九章不等式与不等式组

一、知识网络结构

二、知识要点

1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:

①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

如果 ,那么 (或 );如果 ,那么 (或 );

③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

第十章数据的收集、整理与描述

知识要点

1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

5、画频数直方图的步骤:①计算数(值与最小值的);②确定组距和组数;③列频数分布表;④画频数直方图 。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。